Ecopia.AI, in partnership with Black Swan Analytics LLC, explored the impact of accurate building geolocation on wildfire risk assessment. As the creator of a proprietary, highly sophisticated and predictive wildfire model that includes all of the above factors, Black Swan was the best choice to explore the pitfalls of using the industry-standard parcel-based geocoding.
Since California faces severe wildfire risk, Ecopia picked two counties within California to analyze – Trinity and Modoc – each representing different characteristics, to assess the impact of geolocation on wildfire risk. To conduct the research, Ecopia and Black Swan calculated wildfire risk scores for over 30,000 properties, comprising every property in both those counties, using two separate approaches. First, a wildfire risk score was calculated using each property’s parcel centroid as the geolocation (the centre of the parcel), then the wildfire risk score was calculated using the building’s actual geolocation via Ecopia’s building-based geocoder (based on Ecopia’s proprietary database of all 170M+ building footprints in the US generated from high-resolution satellite imagery).


